Lecture 4 : General Logarithms and Exponentials.

For $a>0$ and x any real number, we define

$$
a^{x}=e^{x \ln a}, \quad a>0
$$

The function a^{x} is called the exponential function with base a.
Note that $\ln \left(a^{x}\right)=x \ln a$ is true for all real numbers x and all $a>0$. (We saw this before for x a rational number).
Note: We have no definition for a^{x} when $a<0$, when x is irrational.
For example $2^{\sqrt{2}}=e^{\sqrt{2} \ln 2}, \quad 2^{-\sqrt{2}}, \quad(-2)^{\sqrt{2}}$ (no definition).
Algebraic rules
The following Laws of Exponent follow from the laws of exponents for the natural exponential function.

$$
a^{x+y}=a^{x} a^{y} \quad a^{x-y}=\frac{a^{x}}{a^{y}} \quad\left(a^{x}\right)^{y}=a^{x y} \quad(a b)^{x}=a^{x} b^{x}
$$

Proof $a^{x+y}=e^{(x+y) \ln a}=e^{x \ln a+y \ln a}=e^{x \ln a} e^{y \ln a}=a^{x} a^{y}$. etc...
Example Simplify $\frac{\left(a^{x}\right)^{2} a^{x^{2}+1}}{a^{2}}$.

Differentiation

The following differentiation rules also follow from the rules of differentiation for the natural exponential.

$$
\frac{d}{d x}\left(a^{x}\right)=\frac{d}{d x}\left(e^{x \ln a}\right)=a^{x} \ln a \quad \frac{d}{d x}\left(a^{g(x)}\right)=\frac{d}{d x} e^{g(x) \ln a}=g^{\prime}(x) a^{g(x)} \ln a
$$

Example Differentiate the following function:

$$
f(x)=(1000) 2^{x^{2}+1}
$$

Graphs of Exponential functions. Case 1: $0<a<1$

- y-intercept: The y-intercept is given by $y=a^{0}=e^{0 \ln a}=e^{0}=1$.
- x-intercept: The values of $a^{x}=e^{x \ln a}$ are always positive and there is no x intercept.
- Slope: If $0<a<1$, the graph of $y=a^{x}$ has a negative slope and is always decreasing, $\frac{d}{d x}\left(a^{x}\right)=$ $a^{x} \ln a<0$. In this case a smaller value of a gives a steeper curve.
- The graph is concave up since the second derivative is $\frac{d^{2}}{d x^{2}}\left(a^{x}\right)=a^{x}(\ln a)^{2}>0$.
- As $x \rightarrow \infty, x \ln a$ approaches $-\infty$, since $\ln a<0$ and therefore $a^{x}=e^{x \ln a} \rightarrow 0$.
- As $x \rightarrow-\infty, x \ln a$ approaches ∞, since both x and $\ln a$ are less than 0 . Therefore $a^{x}=e^{x \ln a} \rightarrow \infty$.

$$
\text { For } 0<a<1, \quad \lim _{x \rightarrow \infty} a^{x}=0, \quad \lim _{x \rightarrow-\infty} a^{x}=\infty \text {. }
$$

Graphs of Exponential functions. Case 2: $a>1$

- y-intercept: The y-intercept is given by $y=a^{0}=e^{0 \ln a}=e^{0}=1$.
- x-intercept: The values of $a^{x}=e^{x \ln a}$ are always positive and there is no x intercept.
- If $a>1$, the graph of $y=a^{x}$ has a positive slope and is always increasing, $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a>0$.
- The graph is concave up since the second derivative is $\frac{d^{2}}{d x^{2}}\left(a^{x}\right)=a^{x}(\ln a)^{2}>0$.
- In this case a larger value of a gives a steeper curve.
- As $x \rightarrow \infty, x \ln a$ approaches ∞, since $\ln a>0$ and therefore $a^{x}=e^{x \ln a} \rightarrow \infty$
- As $x \rightarrow-\infty, x \ln a$ approaches $-\infty$, since $x<0$ and $\ln a>0$. Therefore $a^{x}=e^{x \ln a} \rightarrow 0$.
For $a>1, \quad \lim _{x \rightarrow \infty} a^{x}=\infty, \quad \lim _{x \rightarrow-\infty} a^{x}=0$.

Functions of the form $(f(x))^{g(x)}$.
Derivatives We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:
If a and b are constants and $g(x)>0$ and $f(x)$ and $g(x)$ are both differentiable functions.

$$
\frac{d}{d x} a^{b}=0, \quad \frac{d}{d x}(f(x))^{b}=b(f(x))^{b-1} f^{\prime}(x), \quad \frac{d}{d x} a^{g(x)}=g^{\prime}(x) a^{g(x)} \ln a, \quad \frac{d}{d x}(f(x))^{g(x)}
$$

For $\frac{d}{d x}(f(x))^{g(x)}$, we use logarithmic differentiation or write the function as $(f(x))^{g(x)}=e^{g(x) \ln (f(x))}$ and use the chain rule.
Example Differentiate $x^{2 x^{2}}, x>0$.

Limits

To calculate limits of functions of this type it may help write the function as $(f(x))^{g(x)}=e^{g(x) \ln (f(x))}$.
Example What is $\lim _{x \rightarrow \infty} x^{-x}$

General Logarithmic functions

Since $f(x)=a^{x}$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by $f^{-1}(x)=\log _{a} x$. We get the following from the properties of inverse functions:

$$
\begin{gathered}
f^{-1}(x)=y \quad \text { if and only if } \quad f(y)=x \\
\log _{a}(x)=y \quad \text { if and only if } \quad a^{y}=x \\
f\left(f^{-1}(x)\right)=x \quad f^{-1}(f(x))=x \\
a^{\log _{a}(x)}=x \quad \log _{a}\left(a^{x}\right)=x .
\end{gathered}
$$

Converting to the natural logarithm

It is not difficult to show that $\log _{a} x$ has similar properties to $\ln x=\log _{e} x$. This follows from the Change of Base Formula which shows that The function $\log _{a} x$ is a constant multiple of $\ln x$.

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

The algebraic properties of the natural logarithm thus extend to general logarithms, by the change of base formula.

$$
\log _{a} 1=0, \quad \log _{a}(x y)=\log _{a}(x)+\log _{a}(y), \quad \log _{a}\left(x^{r}\right)=r \log _{a}(x)
$$

for any positive number $a \neq 1$. In fact for most calculations (especially limits, derivatives and integrals) it is advisable to convert $\log _{a} x$ to natural logarithms. The most commonly used logarithm functions are $\log _{10} x$ and $\ln x=\log _{e} x$.
Since $\log _{a} x$ is the inverse function of a^{x}, it is easy to derive the properties of its graph from the graph $y=a^{x}$, or alternatively, from the change of base formula $\log _{a} x=\frac{\ln x}{\ln a}$.

Basic Application

Example Express as a single number $\log _{5} 25-\log _{5} \sqrt{5}$

Using the change of base formula for Derivatives

From the above change of base formula for $\log _{a} x$, we can easily derive the following differentiation formulas:

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a} \quad \frac{d}{d x}\left(\log _{a} g(x)\right)=\frac{g^{\prime}(x)}{g(x) \ln a} .
$$

Example Find $\frac{d}{d x} \log _{2}(x \sin x)$.

A special limit and an approximation of e

We derive the following limit formula by taking the derivative of $f(x)=\ln x$ at $x=1$:

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}=1
$$

Applying the (continuous) exponential function to the limit we get

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Note If we substitute $y=1 / x$ in the above limit we get

$$
e=\lim _{y \rightarrow \infty}\left(1+\frac{1}{y}\right)^{y} \quad \text { and } \quad e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

where n is an integer (see graphs below). We look at large values of n below to get an approximation

$$
\begin{aligned}
& \text { of the value of } e \text {. } \\
& \quad n=10 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.59374246, \quad n=100 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.70481383 \\
& n=100 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.71692393, \quad n=1000 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.1814593
\end{aligned}
$$

Example Find $\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{1 / x}$.

